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Abstract. We consider the behaviour of the axion mass as a function of Higgs coupling constants. The
analysis is significantly simplified when we identify the axion field with the phase difference of the Higgs
neutral components. Spontaneous CP-violation is induced by VEV of the axion field. The estimation of the
axion mass for any values of δCP and tan β shows inconsistency of MSSM with the present experimental
results.

1 Introduction

One of the more elegant ways of introducing CP-violation
is based on the possibility of spontaneous T-breaking in
the system of two interacting Higgs doublets, developed
by T.D. Lee [1]. This system naturally arises in the mini-
mal supersymmetric model and has been shown to render
a CP-violating vacuum even though the Lagrangian it-
self is CP-conserving. It becomes possible when one-loop
corrections to the Higgs potential are taken into account
[2],[3], leading to a term in the VEV of the potential which
depends on the relative phase of the Higgs fields. The vi-
ability of this theory can be determined through its phe-
nomenological implications, one of which is the neutral
Higgs mass spectrum. As shown below, we can directly
relate the CP-violating angle to the vacuum expectation
value of the axion. This fact provides us with an opportu-
nity to explicitly examine the dynamics of the axion mass
and to simplify the analysis of the physical spectrum.

The most general renormalizable CP-conserving po-
tential of two Higgs doublets is given by
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where all parameters are real. After spontaneous symme-
try breaking, the neutral components of the Higgs fields
acquire the following vacuum expectation values

〈Φ0
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2〉 = v2eiδ .

It has been shown [2] that the VEV of the potential for
non-zero λ5 can be rewritten as follows
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(We deviate from the notation of [2] in the definitions of
the v1,2 and λ5−7.) From (2) one can see that in order
for the spontaneous CP-breaking to occur the following
inequalities must hold

λ5 > 0 , (4)
−1 < ∆ < 1 . (5)

In this case we obtain a non-zero CP-violating phase δ
given by
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The requirement that our vacuum be at least a stationary
point of the potential results in the following constraints
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where the last condition coincides with (6) in the case of
the CP-violating vacuum.

2 The axion mass

To calculate the mass spectrum of the system we should
choose the appropriate coordinates. The vacuum can be
described by the three variables v1,2 and δ, so it is natural
to go over to the polar coordinates:

Φk(x) = ρk(x)eiξk(x) , k = 1, 2 . (10)
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Fig. 1. This graph illustrates the qualitative behaviour of 〈V 〉
as a function of δ (for simplicity we set λ6,7 = 0): 1 – λ5 <
λcrit = m2

3/2v1v2, 2 – λ5 = λcrit, 3 – λ5 > λcrit

Further, let us consider the behaviour of the fields near
the vacuum

ρk = vk + ηk(x)
ξk(x) = δ̄k + δk(x)

We would like to associate a particle with every real degree
of freedom, therefore we should check whether the kinetic
term has the proper form. In terms of the new variables
the kinetic term reads
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where we have introduced
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The potential depends upon a difference of the Higgs’
phases solely, so we can interpret γ as a Goldstone boson
appearing due to spontaneous U(1) breaking. We may as-
sume that the real parts of Φ0

1,2 are CP-even fields [4] then
the remaining angular degree of freedom, proportional to
δ, corresponds to a CP-odd axion, while the linear combi-
nations of ρ1 and ρ2 give two CP-even (in the case of CP-
conserving vacuum) Higgs bosons h0 and H0. The mass
spectrum can be found by diagonalization of the matrix
of the second derivatives of the potential:
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In the case of relatively small λ5, i.e. when condition (5)
cannot be fulfilled, the minimum of the potential is given
by δCP = 0 and CP-even and CP-odd state do not mix:

∂2〈V 〉
∂v1,2∂α

∣∣∣∣
α=0

= 0

and when λ5−7 = 0 we recover the well-known result
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where tanβ = v2/v1. In the limit m3 → 0 the
PQ-symmetry of the potential is restored, resulting in
the massless axion. The other two mass-eigenvalues cor-
respond to h0 and H0 and are given, for example, in [5].
In general, the axion remains massive until the param-
eters λ5,6,7 reach certain critical values, determined by
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giving rise to a massless axion. The further increase of λ5
makes the curvature matrix flip sign, signifying δCP = 0
is not a stable stationary point any more and sponta-
neous CP-violation occurs. To get a physical boson mass
spectrum we must expand all the fields around the CP-
breaking vacuum. Now the axion field acquires VEV, as
dictated by (6), even though it is not a mass-eigenstate any
more and, generally speaking, all matrix elements M2

ij are
non-zero:
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where we have used (7)–(9) to exclude m1−3 from the
equations. The value of the dipole moment of the neu-
tron shows that we should expect δ to be relatively small
[2]: δ < 10−3 cot β and cotβ ≤ 50. In this case we can
estimate the axion mass by means of perturbation theory
with respect to sin δ. The first order correction vanishes
and in the second order we get

m2
A0

≤ 2v2λ5 sin2 δ . (17)

This limit cannot be removed by varying λ6,7 and β. In
particular, N. Maekawa’s [2] suggestion concerning the
possibility of existence of a heavy axion in the case of large
tanβ or cotβ does not work, at least as long as perturba-
tive approach is valid. In the case of MSSM, i.e. when the
Higgs coupling constants are determined by SU(2) and
U(1) gauge couplings g and g′, the situation gets worse
since λ5−7 are of the order of 1-loop corrections [3]. We can
therefore consider perturbation expansion with respect to
them, and to the first order

m2
A0

≈ 2v2λ5 sin2 δ (18)
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regardless of the value of sin δ. The numerical diagonaliza-
tion of M2

ij also shows that the axion mass never exceeds
the limit (18) for any β and δ, while the other bosons stay
significantly heavier. This estimation is inconsistent with
the recent experimental limit [2],[6] (mA0 > 20 GeV) and
we conclude that within the frames of MSSM spontaneous
CP-violation is unrealistic.
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